Why is it that popular science articles about fusion energy are always so cringe-worthy? Is scientific illiteracy a prerequisite for writing them? Take the latest one to hit the streets, for example. Entitled Lockheed Martin Now Has a Patent For Its Potentially World Changing Fusion Reactor, it had all the familiar “unlimited energy is just around the corner” hubris we’ve come to expect in articles about fusion. When I finished reading it I wondered whether the author imagined all that nonsense on his own, or some devilish plasma physicist put him up to it as a practical joke. The fun starts in the first paragraph, where we are assured that,
If this project has been progressing on schedule, the company could debut a prototype system that size of shipping container, but capable of powering a Nimitz-class aircraft carrier or 80,000 homes, sometime in the next year or so.
Trust me, dear reader, barring divine intervention no such prototype system, capable of both generating electric energy and fitting within a volume anywhere near that of a shipping container, will debut in the next year, or the next five years, or the next ten years. Reading on, we learn that,
Unlike in nuclear fission, where atoms hit each other release energy, a fusion reaction involves heating up a gaseous fuel to the point where its atomic structure gets disrupted from the pressure and some of the particles fuse into a heavier nucleus.
Well, not really. Fission is caused by free neutrons, not by “atoms hitting each other.” It would actually be more accurate to say that fusion takes place when “atoms hit each other,” although it’s really the atomic nuclei that “hit” each other. Fusion doesn’t involve “atomic structure getting disrupted from pressure.” Rather, it happens when atoms acquire enough energy to overcome the Coulomb repulsion between two positively charged atomic nuclei (remember, like charges repel), and come within a sufficiently short distance of each other for the much greater strong nuclear force of attraction to take over. According to the author,
But to do this you need to be able to hold the gas, which is eventually in a highly energized plasma state, for a protracted period of time at a temperature of hundreds of millions of degrees Fahrenheit.
This is like claiming that a solid can be in a liquid state. A plasma is not a gas. It is a fourth state of matter quite unlike the three (solid, liquid, gas) that most of us are familiar with. Shortly thereafter we are assured that,
Running on approximately 25 pounds of fuel – a mixture of hydrogen isotopes deuterium and tritium – Lockheed Martin estimated the notional reactor would be able to run for an entire year without stopping. The device would be able to generate a constant 100 megawatts of power during that period.
25 pounds of fuel would include about 15 pounds of tritium, a radioactive isotope of hydrogen with a half-life of just over 12 years. In other words, its atoms decay about 2000 times faster than those of the plutonium 239 found in nuclear weapons. It’s true that the beta particle (electron) emitted in tritium decay is quite low energy by nuclear standards but, as noted in Wiki, “Tritium is an isotope of hydrogen, which allows it to readily bind to hydroxyl radicals, forming tritiated water (HTO), and to carbon atoms. Since tritium is a low energy beta emitter, it is not dangerous externally (its beta particles are unable to penetrate the skin), but it can be a radiation hazard when inhaled, ingested via food or water, or absorbed through the skin.” Obviously, water and many carbon compounds can be easily inhaled or ingested. Tritium is anything but benign if released into the environment. Here we will charitably assume that the author didn’t mean to say that 25 pounds of fuel would be available all at once, but would be bred gradually and then consumed as fuel in the reactor during operation. The amount present at any given time would more appropriately be measured in grams than in pounds. The article continues with rosy scenarios that might have been lifted from a “Back to the Future” movie:
Those same benefits could apply to vehicles on land, ships at sea, or craft in space, providing nearly unlimited power in compact form allowing for operations across large areas, effectively eliminating the tyranny of distance in many cases. Again, for military applications, unmanned ground vehicles or ships could patrol indefinitely far removed from traditional logistics chains and satellites could conduct long-term, resource intensive activities without the need for large and potentially dangerous fission reactors.
Great shades of “Dr. Fusion!” Let’s just say that “vehicles on land” is a bit of a stretch. I can only hope that no Lockheed engineer was mean-spirited enough to feed the author such nonsense. Moving right along, we read,
Therein lies perhaps the biggest potential benefits of nuclear fusion over fission. It’s produces no emissions dangerous to the ozone layer and if the system fails it doesn’t pose nearly the same threat of a large scale radiological incident. Both deuterium and tritium are commonly found in a number of regular commercial applications and are relatively harmless in low doses.
I have no idea what “emission” of the fission process the author thinks is “dangerous to the ozone layer.” Again, as noted above, tritium is anything but “relatively harmless” if ingested. Next we find perhaps the worst piece of disinformation of all:
And since a fusion reactor doesn’t need refined fissile material, its much harder for it to serve as a starting place for a nuclear weapons program.
Good grief, the highly energetic neutrons produced in a fusion reactor are not only capable of breeding tritium, but plutonium 239 and uranium 233 from naturally occurring uranium and thorium as well. Both are superb explosive fuels for nuclear weapons. And tritium? It is used in a process known as “boosting” to improve the performance of nuclear weapons. Finally, we run into what might be called the Achilles heel of all tritium-based fusion reactor designs:
Fuel would also be abundant and relatively easy to source, since sea water provides a nearly unlimited source of deuterium, while there are ready sources of lithium to provide the starting place for scientists to “breed” tritium.
I think not. Breeding tritium will be anything but a piece of cake. The process will involve capturing the neutrons produced by the fusion reactions in a lithium blanket surrounding the reactor, doing so efficiently enough to generate more tritium from the resulting reactions than the reactor consumes as fuel, and then extracting the tritium and recycling it into the reactor without releasing any of the slippery stuff into the environment. Do you think the same caliber of engineers who brought us Chernobyl, Fukushima, and Three Mile Island will be able to pull that rabbit out of their hats without a hitch? If so, you’re more optimistic than I am.
Hey, I like to be as optimistic about fusion as it’s reasonable to be. I think it’s certainly possible that some startup company with a bright idea will find the magic bullet that makes fusion reactors feasible, preferably involving fusion reactions that don’t involve tritium. It’s also quite possible that the guys at Lockheed will achieve breakeven, although getting a high enough gain of energy in versus energy out to enable efficient generation of electric power is another matter. There’s a difference between optimism and scientifically illiterate hubris, though. Is it too much to ask that people who write articles about fusion at least run them by somebody who actually knows something about the subject to see if they pass the “ho, ho” test before publishing? What’s that you say? What about me? Please read the story about the Little Red Hen.