Nuclear Power and the Anti-Science Ideology of the “Progressive” Left

The ideological Left is fond of accusing the Right of being “anti-science.”  The evidence often comes in the form of Exhibit A (climate denialism) and Exhibit B (Darwin denialism).  True, these maladies are encountered more frequently on the Right than on the Left.  As it happens, however, there are also scientific allergies on the Left, and there is little question that they have been a great deal more damaging than their conservative analogs.  The best example is probably the Blank Slate debacle.  In order to prop up leftist shibboleths, denial of the very existence of human nature was enforced for more than half a century.  The effect on the behavioral sciences, and with them the self-knowledge critical to our very survival, was devastating.  “Scientific” Marxism-Leninism is another obvious example.  However, when it comes to scientific allergies, the Left’s irrational and often fanatical opposition to nuclear power may turn out to be the most damaging of all.

Those who seek to alarm us about rising CO2 levels in the atmosphere, and yet reject the most effective technology for bringing them under control, are not serious.  They are mere poseurs.  Thanks to these anti-science attitudes on the Left, dozens of dirty, coal-fired power plants will be built in Germany alone to replace the baseload generating capacity once provided by nuclear reactors.  The situation is no better in the U.S.  Both countries have developed some of the most advanced, not to mention safest, nuclear technologies known to man, and yet both, hamstrung by opposition coming from the Left of the political spectrum, have abdicated the responsibility to apply that knowledge.  Instead, they are exporting it – to China.

As I write this, we are helping China to build a novel type of reactor that combines molten salt technology developed in the United States with a version of the “pebble” type fuel pioneered by the Germans.  Approved in 2011, the original target completion date of 2015 has now slipped to 2020, but both goals would be out of the question in the byzantine regulatory atmosphere of the 21st century United States.  U.S. knowhow will also be used to build the novel “traveling wave” reactor design favored by Bill Gates – also in China.  The Chinese are also actively pursuing the high temperature gas-cooled reactor (HTGR) technology that was proposed for the ill-fated Next Generation Nuclear Plant (NGNP), further development of which was recently cancelled in the United States.

I certainly have nothing against China building advanced reactors using technology that was developed elsewhere.  It’s good that the knowledge in question is being applied at least somewhere on the planet.  However, I find it unfortunate that we no longer have the leadership, vision, or political will to do so ourselves.  It was not always so.  The U.S. commissioned the world’s first nuclear powered submarine, the U.S.S. Nautilus, in 1954, little more than a decade after the successful demonstration of the first self-sustaining nuclear chain reaction at the University of Chicago.  More than 50 experimental nuclear reactors were built at what is now Idaho National Laboratory (INL) in a period of about two decades stretching from the 50’s to the mid-70’s.  None has been built since.  The situation is similar at Oak Ridge National Laboratory (ORNL), site of the world’s first molten salt reactor.  Instead of working, next generation reactors, INL, ORNL, and the rest of the U.S. national laboratories now turn out only paper studies – gigantic mounds of them – in quantities that would probably stretch to the moon and back by now.  The chances that any of them will ever be usefully applied in this country are slim and none.

The technologies in question are not mere incremental improvements over the conventional nuclear power plants that now produce almost all the world’s nuclear power.  They have the demonstrated capacity to extract more than an order of magnitude more energy out of a given quantity of mined fuel material than conventional designs.  They can burn the long-lived radioactive actinides and other hazardous isotopes produced in nuclear fission that represent the most dangerous types of radioactive waste, reducing the residual radioactivity from operation of a nuclear plant to a level less than that of the original uranium ore is less than 500 years – a far cry from the millions of years often cited by hysterical anti-nukers.  Under the circumstances, it is worth taking note of where the opposition that stopped the development and application of these technologies in the past, and continues to do so today, is coming from.

The regulatory nightmare that has brought the continued development of these technologies in the United States to a virtual standstill is primarily the legacy of the “progressive” Left.  The anti-nuclear zealots on that side of the political spectrum cling to bogus linear no-threshold models of radioactive hazard, grotesquely exaggerated horror stories about the supposed impossibility of dealing with nuclear waste, and a stubborn cluelessness about the dangers of the alternative coal and other fossil-fired technologies that their opposition to nuclear will inevitably continue to promote in spite of all their strident denials.  These are facts that it would be well to keep in mind the next time you hear the Left calling the Right “anti-science,” or, for that matter, the next time you hear them pontificating about their deep commitment to the fight against global warming.

China Bets on Thorium Reactors

According to the South China Morning Post (hattip Next Big Future),

The deadline to develop a new design of nuclear power plant has been brought forward by 15 years as the central government tries to reduce the nation’s reliance on smog-producing coal-fired power stations.  A team of scientists in Shanghai had originally been given 25 years to try to develop the world’s first nuclear plant using the radioactive element thorium as fuel rather than uranium, but they have now been told they have 10, the researchers said.

I have to admit, I feel a little envious when I read things like that.  The Chinese government is showing exactly the kind of leadership that’s necessary to guide the development of nuclear power along rational channels, and it’s a style of leadership of which our own government no longer seems capable.

What do I mean by “rational channels?”  Among other things, I mean acting as a responsible steward of our nuclear resources, instead of blindly wasting them , as we are doing now.  How are we wasting them?  By simply throwing away the lion’s share of the energy content of every pound of uranium we mine.

Contrary to the Morning Post article, thorium is not a nuclear fuel.  The only naturally occurring nuclear fuel is uranium 235 (U235).  It is the only naturally occurring isotope that can be used directly to fuel a nuclear reactor.  It makes up only a tiny share – about 0.7% – of mined uranium.  The other 99.3% is mostly uranium 238 (U238).  What’s the difference?  When a neutron happens along and hits the nucleus of an atom of U235, it usually fissions.  When a neutron happens along and hits the nucleus of an atom of U238, unless its going very fast, it commonly just gets absorbed.  There’s more to the story than that, though.  When it gets absorbed, the result is an atom of U239, which eventually decays to an isotope of plutonium – plutonium 239 (Pu239).  Like U235, Pu239 actually is a nuclear fuel.  When a neutron hits its nucleus, it too will usually fission.  The term “fissile” is used to describe such isotopes.

In other words, while only 0.7% of naturally occurring uranium can be used directly to produce energy, the rest could potentially be transmuted into Pu239 and burned as well.  All that’s necessary for this to happen is to supply enough extra neutrons to convert the U238.  As it happens, that’s quite possible, using so-called breeder reactors.  And that’s where thorium comes in.  Like U238, the naturally occurring isotope thorium 232 (Th232) absorbs neutrons, yielding the isotope Th233, which eventually decays to U233, which is also fissile.  In other words, useful fuel can be “bred” from Th232 just as it can from U238.  Thorium is about three times as abundant as uranium, and China happens to have large reserves of the element.  According to current estimates, reserves in the U.S. are much larger, and India’s are the biggest on earth.

What actually happens in almost all of our currently operational nuclear reactors is a bit different.  They just burn up that 0.7% of U235 in naturally occurring uranium, and a fraction of the Pu239 that gets bred in the process, and then throw what’s left away.  “What’s left” includes large amounts of U238 and various isotopes of plutonium as well as a brew of highly radioactive reaction products left over from the split atoms of uranium and plutonium.  Perhaps worst of all, “what’s left” also includes transuranic actinides such as americium and curium as well as plutonium.  These can remain highly radioactive and dangerous for thousands of years, and account for much of the long-term radioactive hazard of spent nuclear fuel.  As it happens, these actinides, as well as some of the more dangerous and long lived fission products, could potentially be destroyed during the normal operation of just the sort of molten salt reactors the crash Chinese program seeks to develop.  As a result, the residual radioactivity from operating such a plant for, say, 40 years, could potentially be less than that of the original uranium ore after a few hundreds of years instead of many thousands.  The radioactive hazard of such plants would actually be much less than that of burning coal, because coal contains small amounts of both uranium and thorium.  Coal plants spew tons of these radioactive elements, potentially deadly if inhaled, into the atmosphere every year.

Why on earth are we blindly wasting our potential nuclear energy resources in such a dangerous fashion?  Because it’s profitable.  For the time being, at least, uranium is still cheap.  Breeder reactors would be more expensive to build than current generation light water reactors (LWRs).  To even start one, you’d have to spend about a decade, give or take, negotiating the highly costly and byzantine Nuclear Regulatory Commission licensing process.  You could count on years of even more costly litigation after that.  No reprocessing is necessary in LWRs.  Just quick and dirty storage of the highly radioactive leftovers, leaving them to future generations to deal with.  You can’t blame the power companies.  They’re in the business to make a profit, and can’t continue to operate otherwise.  In other words, to develop nuclear power rationally, you need something else in the mix – government leadership.

We lack that leadership.  Apparently the Chinese don’t.

 

Thorium metal
Thorium metal